Calculate Eccentricity (e), Foci, X Y Intercept, Major, Minor Axis of Ellipse for 3x2 + 4y2 = 5 Equation?
Given an ellipse with equation 3x2 + 4y2 = 5 determine the following:
- x and y intercepts
- Coordinates of the foci
- Length of the major and minor axes
- Eccentricity (e)
3x2 + 4y2 = 5 | |
5 |
3x2 + 4y2 = 5 3x2 4y2
= ----------------- = -------------------- + -------------- = 1
5 1.66666666667 1.25
To determine a and b, we need the square roots of the bottom portions of the fractions:
3x2 4y2
= -------------------- + ---------------------- = 1
1.290994448742 1.118033988752
Calculate x intercept by setting y = 0:
x2 = 1.66666666667 x 1
x2 = 1.66666666667
x = √1.66666666667
x = ± 1.29099444874
Calculate y intercept by setting x = 0:
y2 = 1.25 x 1
y2 = 1.25
y = √1.25
y = ± 1.11803398875
Calculate the foci
The equation relating a, b, and c is c2 = √a2 - b2Since a must be greater than b, a = 1.29099444874 and b = 1.11803398875c2 = √1.666666666672 - 1.252c2 = √0.416666666667Foci Points are (0,√0.416666666667) and (0,-√0.416666666667)
Calculate length of the major axis:
Major axis length = 2 x a
Major axis length = 2 x 1.29099444874
Major axis length = 2.58198889747
Calculate length of the minor axis:
Minor axis length = 2 x b
Minor axis length = 2 x 1.11803398875
Minor axis length = 2.2360679775
Calculate eccentricity (e):
e = | √a2 - b2 |
√a2 |
e = | √1.666666666672 - 1.252 |
√1.666666666672 |
e = | √2.77777777778 - 1.5625 |
√2.77777777778 |
e = | √1.21527777778 |
√2.77777777778 |
e = | 1.10239637961 |
1.66666666667 |
e = 0.661437827766
No comments:
Post a Comment